References

1

M. Leibscher, T. F. Giesen, and C. P. Koch. Principles of enantio-selective excitation in three-wave mixing spectroscopy of chiral molecules. J. Chem. Phys. 151, 014302 (2019). doi:10.1063/1.5097406.

2

J. R. A. Moreno, T. R. Huet, and J. J. L. González. Conformational relaxation of s-(+)-carvone and r-(+)-limonene studied by microwave fourier transform spectroscopy and quantum chemical calculations. Struct. Chem. 24, 1163 (2012). doi:10.1007/s11224-012-0142-8.

3

U. V. Riss and H. -D. Meyer. Calculation of resonance energies and widths using the complex absorbing potential method. J. Phys. B 26, 4503 (1993). doi:10.1088/0953-4075/26/23/021.

4

D. E. Manolopoulos. Derivation and reflection properties of a transmission-free absorbing potential. J. Chem. Phys. 117, 9552 (2002). doi:10.1063/1.1517042.

5

R. A. Bain, J. N. Bardsley, B. R. Junker, and C. V. Sukumar. Complex coordinate studies of resonant electron-atom scattering. J. Phys. B 7, 2189 (1974). doi:10.1088/0022-3700/7/16/017.

6

A. Blech. Calculation of predissociation lifetimes in dimeric products of cold reactive collisions. Master's thesis, Universität Kassel, (2018). URL: https://its-vm615.its.uni-kassel.de/wiki-koch/Theses.

7

P. Doria, T. Calarco, and S. Montangero. Optimal control technique for many-body quantum dynamics. Phys. Rev. Lett. 106, 190501 (2011). doi:10.1103/PhysRevLett.106.190501.

8

M. H. Goerz, G. Gualdi, D. M. Reich, C. P. Koch, F. Motzoi, K. B. Whaley, J. Vala, M. M. Müller, S. Montangero, and T. Calarco. Optimizing for an arbitrary perfect entangler. II. Application. Phys. Rev. A 91, 062307 (2015). doi:10.1103/PhysRevA.91.062307.

9

N. Rach, M. M. Müller, T. Calarco, and S. Montangero. Dressing the chopped-random-basis optimization: a bandwidth-limited access to the trap-free landscape. Phys. Rev. A 92, 062343 (2015). doi:10.1103/PhysRevA.92.062343.

10

R. Baer and R. Kosloff. Quantum dissipative dynamics of adsorbates near metal surfaces: a surrogate hamiltonian theory applied to hydrogen on nickel. J. Chem. Phys. 106, 8862 (1997). doi:10.1063/1.473950.

11

C. P. Koch. Quantum dissipative dynamics with a Surrogate Hamiltonian. The method and applications. PhD thesis, Humboldt Universität Berlin, (2002). doi:10.18452/14816.

12

D. J. Tannor. Introduction to Quantum Mechanics: A Time-Dependent Perspective. University Science Books, Sausalito, California (2007).

13

R. Dum, P. Zoller, and H. Ritsch. Monte Carlo simulation of the atomic master equation for spontaneous emission. Phys. Rev. A 45, 4879 (1992). doi:10.1103/PhysRevA.45.4879.

14

K. Mølmer, Y. Castin, and J. Dalibard. Monte Carlo wave-function method in quantum optics. J. Opt. Soc. Am. B 10, 524 (1993). doi:10.1364/JOSAB.10.000524.

15

K. Mølmer and Y. Castin. Monte Carlo wavefunctions in quantum optics. Quantum Semiclass. Opt. 8, 49 (1996). doi:10.1088/1355-5111/8/1/007.

16

M. B. Plenio and P. L. Knight. The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Mod. Phys. 70, 101 (1998). doi:10.1103/RevModPhys.70.101.

17

M. Ndong, H. Tal-Ezer, R. Kosloff, and C. P. Koch. A Chebychev propagator for inhomogeneous Schrödinger equations. J. Chem. Phys. 130, 124108 (2009). doi:10.1063/1.3098940.

18

M. Ndong, H. Tal-Ezer, R. Kosloff, and C. P. Koch. A Chebychev propagator with iterative time ordering for explicitly time-dependent Hamiltonians. J. Chem. Phys. 132, 064105 (2010). doi:10.1063/1.3312531.

19

A. Gil, J. Segura, and N. Temme. Numerical Methods for Special Functions. Society for Industrial and Applied Mathematics (2007). doi:10.1137/1.9780898717822.

20

M. Goerz. Optimizing Robust Quantum Gates in Open Quantum Systems. PhD thesis, Universität Kassel, (2015). URL: https://michaelgoerz.net/#PhD-Thesis.

21

T. Caneva, T. Calarco, and S. Montangero. Chopped random-basis quantum optimization. Phys. Rev. A 84, 022326 (2011). doi:10.1103/PhysRevA.84.022326.

22

N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. J. Glaser. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magnet. Res. 172, 296 (2005). doi:10.1016/j.jmr.2004.11.004.

23

D. M. Reich, M. Ndong, and C. P. Koch. Monotonically convergent optimization in quantum control using Krotov's method. J. Chem. Phys. 136, 104103 (2012). doi:10.1063/1.3691827.

24

J. P. Palao and R. Kosloff. Optimal control theory for unitary transformations. Phys. Rev. A 68, 062308 (2003). doi:10.1103/PhysRevA.68.062308.

25

H. Tal-Ezer and R. Kosloff. An accurate and efficient scheme for propagating the time dependent Schrödinger equation. J. Chem. Phys. 81, 3967 (1984). doi:10.1063/1.448136.

26

K. Willner, O. Dulieu, and F. Masnou-Seeuws. Mapped grid methods for long-range molecules and cold collisions. J. Chem. Phys. 120, 548 (2004). doi:10.1063/1.1630031.

27

S. Kallush and R. Kosloff. Improved methods for mapped grids: applied to highly excited vibrational states of diatomic molecules. Chem. Phys. Lett. 433, 221 (2006). doi:10.1016/j.cplett.2006.11.040.

28

C. P. Koch, J. P. Palao, R. Kosloff, and F. Masnou-Seeuws. Stabilization of ultracold molecules using optimal control theory. Phys. Rev. A 70, 013402 (2004). doi:10.1103/PhysRevA.70.013402.

29

B. Kraus and J. I. Cirac. Optimal creation of entanglement using a two-qubit gate. Phys. Rev. A 63, 062309 (2001). doi:10.1103/PhysRevA.63.062309.

30

Y. Makhlin. Nonlocal properties of two-qubit gates and mixed states, and the optimization of quantum computations. Quantum Inf. Process. 1, 243 (2002). doi:10.1023/A:1022144002391.

31

M. M. Müller, D. M. Reich, M. Murphy, H. Yuan, J. Vala, K. B. Whaley, T. Calarco, and C. P. Koch. Optimizing entangling quantum gates for physical systems. Phys. Rev. A 84, 042315 (2011). doi:10.1103/PhysRevA.84.042315.

32

P. Watts, J. Vala, M. M. Müller, T. Calarco, K. B. Whaley, D. M. Reich, M. H. Goerz, and C. P. Koch. Optimizing for an arbitrary perfect entangler: I. Functionals. Phys. Rev. A 91, 062306 (2015). doi:10.1103/PhysRevA.91.062306.

33

D. Reich. Optimising the nonlocal content of a two-qubit gate. Master's thesis, Freie Universität Berlin, (2010).

34

A. Childs, H. Haselgrove, and M. Nielsen. Lower bounds on the complexity of simulating quantum gates. Phys. Rev. A 68, 052311 (2003). doi:10.1103/PhysRevA.68.052311.

35

S. Lorenzo, F. Plastina, and M. Paternostro. Geometrical characterization of non-Markovianity. Phys. Rev. A 88, 020102 (2013). doi:10.1103/PhysRevA.88.020102.

36

H.-P. Breuer, E.-M. Laine, and J. Piilo. Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009). doi:10.1103/PhysRevLett.103.210401.

37

D. Basilewitsch. Entangling dynamics in superconducting phase qudits under pythagorean control. Master's thesis, Universität Kassel, (2016). URL: https://its-vm615.its.uni-kassel.de/wiki-koch/Theses.

38

L. Marder. Optimal control with krotov's method using iterative time ordering. Master's thesis, Universität Kassel, (2016). URL: https://its-vm615.its.uni-kassel.de/wiki-koch/Theses.

39

M. H. Goerz, M. A. Kasevich, and V. S. Malinovsky. Quantum optimal control for atomic fountain interferometry. In Proc. SPIE 11700, Optical and Quantum Sensing and Precision Metrology. (2021). doi:10.1117/12.2587002.

40

C. Trallero-Herrero, D. Cardoza, T. C. Weinacht, and J. L. Cohen. Coherent control of strong field multiphoton absorption in the presence of dynamic stark shifts. Phys. Rev. A 71, 013423 (2005). doi:10.1103/PhysRevA.71.013423.

41

P. Nuernberger. Differences and analogies between linearly chirped and colored double pulses in the femtosecond regime. Opt. Comm. 282, 227 (2009). doi:10.1016/j.optcom.2008.10.004.

42

R. E. Goetz, M. Merkel, A. Karamatskou, R. Santra, and C. P. Koch. Maximizing hole coherence in ultrafast photoionization of argon with an optimization by sequential parametrization update. Phys. Rev. A 94, 023420 (2016). URL: https://link.aps.org/doi/10.1103/PhysRevA.94.023420, doi:10.1103/PhysRevA.94.023420.

43

C. P. Koch, R. Kosloff, E. Luc-Koenig, F. Masnou-Seeuws, and R. Moszyński. Ultracold & Ultrafast: Making and Manipulating Ultracold Molecules with Time-depedendent Laser Fields. In L. Hollberg, J. Bergquist, and M. Kasevich, editors, Laser Spectroscopy: Proceedings of the 18th International Conference (ICOLS 07), Telluride, Colorado, USA, 24-29 June 2007, 219–227. World Scientific, (2008). doi:10.1142/9789812813206_0019.

44

A. T. Rezakhani. Characterization of two-qubit perfect entanglers. Phys. Rev. A 70, 052313 (2004). doi:10.1103/PhysRevA.70.052313.

45

J. Zhang, J. Vala, S. Sastry, and K. B. Whaley. Exact two-qubit universal quantum circuit. Phys. Rev. Lett. 91, 027903 (2003). doi:10.1103/PhysRevLett.91.027903.

46

J. Zhang, J. Vala, S. Sastry, and K. B. Whaley. Geometric theory of nonlocal two-qubit operations. Phys. Rev. A 67, 042313 (2003). doi:10.1103/PhysRevA.67.042313.

47

P. Watts, M. O'Connor, and J. Vala. Metric structure of the space of two-qubit gates, perfect entanglers and quantum control. Entropy 15, 1963 (2013). doi:10.3390/e15061963.

48

J. Zhang, J. Vala, S. Sastry, and K. B. Whaley. Minimum construction of two-qubit quantum operations. Phys. Rev. Lett. 93, 020502 (2004). doi:10.1103/PhysRevLett.93.020502.

49

N. Khaneja, R. Brockett, and S. J. Glaser. Time optimal control in spin systems. Phys. Rev. A 63, 032308 (2001). doi:10.1103/PhysRevA.63.032308.

50

M. Musz, M. Kuś, and K. Życzkowski. Unitary quantum gates, perfect entanglers, and unistochastic maps. Phys. Rev. A 87, 022111 (2013). doi:10.1103/PhysRevA.87.022111.